this section or a higher pressure agreed upon at the pre-transfer conference required by §156.120(w) of this chapter. - (f) A pressure sensing device must be provided which activates the emergency shutdown system required by §154.550 of this part and closes the remotely operated cargo vapor shutoff valve required by §154.810(a) of this subpart when the pressure at the facility vapor connection exceeds 2.0 psi, or a lower pressure agreed upon at the pre-transfer conference required by §156.120(w) of this chapter. The sensing device must be independent of the device used to activate the alarm required by paragraph (d) of this section. - (g) A pressure sensing device must be provided which closes the remotely operated cargo vapor shutoff valve required by §154.810(a) of this subpart when the vacuum at the facility vapor connection is more than 1.0 psi, or a lesser vacuum set at the pre-transfer conference required by §156.120(w) of this chapter. The sensing device must be independent of the device used to activate the alarm required by paragraph (e) of this section. - (h) The pressure sensing devices required by paragraphs (d) and (f) of this section must be located in the vapor collection line between the facility vapor connection and the manual isolation valve, if required by \$154.810(h) of this subpart, unless an interlock is provided which prevents operation of the system when the isolation valve is closed. - (i) A pressure indicating device must be provided which indicates the pressure in the vapor collection line. - (j) If a compressor, blower, or eductor capable of drawing more than 1.0 psi vacuum is used to draw vapor from the vessel, a vacuum relief valve must be installed in the vapor collection line between the compressor, blower, or eductor and the facility vapor connection, which: - (1) Relieves at a pressure such that the pressure in the vapor collection system at the facility vapor connection does not exceed 1.0 psi vacuum; - (2) Has a relieving capacity equal to or greater than the capacity of the compressor, blower, or eductor; - (3) Has a flame screen fitted at the vacuum relief opening; and - (4) Has been tested for relieving capacity in accordance with paragraph 1.5.1.3 of API 2000 (incorporated by reference; see § 154.106) with a flame screen fitted. - (k) When a facility collects cargo vapor through an undersea pipeline from a vessel moored offshore, the vacuum relief valve may be set at a vacuum greater than 1.0 psi vacuum provided the pressure controls take into account the pressure drop across the vessel's vapor collection system, any vapor collection hoses, and the undersea pipeline as a function of the actual transfer rate. - (1) If the pressure in the vapor collection system can exceed 2.0 psig due to a malfunction in an inerting, enriching, or diluting system a pressure relief valve must: - (1) Be installed between the point where inerting, enriching, or diluting gas is introduced into the vapor collection system and the facility vapor connection; - (2) Relieve at a pressure such that the pressure in the vapor collection system at the facility vapor connection does not exceed 2.0 psig: - (3) Have a relieving capacity equal to or greater than the maximum capacity of the facility inerting, enriching, or diluting gas source; - (4) If not designed to insure a minimum vapor discharge velocity of 30 meters (98.4 ft.) per second, have a flame screen fitted at the discharge opening; and - (5) Have been tested for relieving capacity in accordance with paragraph 1.5.1.3 of API 2000. - (m) The relieving capacity test required by paragraph (1)(5) must be carried out with a flame screen fitted at the discharge opening if the pressure relief valve is not designed to insure a minimum vapor discharge velocity of 30 meters (98.4 ft.) per second. [CGD 88–102, 55 FR 25429, June 21, 1990, as amended by USCG–1998–3799, 63 FR 35531, June 30, 1998; USCG–2001–8661, 74 FR 45023, Aug. 31, 2009] ## § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a single facility vapor connection that receives vapor only from a vessel with ## § 154.822 inerted cargo tanks and processes vapor with a vapor recovery unit must: - (1) Be capable of inerting the vapor collection line in accordance with §154.824(a) of this subpart prior to receiving vapors from the vessel; - (2) Have at least one oxygen analyzer that samples the vapor concentration continuously at a point not more than 6 meters (19.7 ft.) from the facility vapor connection; and - (3) Meet 154.824 (f)(1), (f)(2), (g), (h)(2), and (h)(3) of this subpart. - (b) A vapor control system with a single facility vapor connection that receives vapor only from a vessel with inerted cargo tanks and processes vapor with a vapor destruction unit must: - (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor connection; or - (2) Have an inerting system that meets the requirements of §154.824 of this subpart. - (c) A vapor control system with a single facility vapor connection that receives vapor from a vessel with cargo tanks that are not inerted and processes vapor with a vapor recovery unit must: - (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor connection; or - (2) Have an inerting, enriching, or diluting system that meets the requirements of §154.824 of this subpart. - (d) A vapor control system with a single facility vapor connection that receives vapor from a vessel with cargo tanks that are not inerted and processes the vapor with a vapor destruction unit must: - (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor connection; and - (2) Have an inerting, enriching, or diluting system that meets the requirements of §154.824 of this subpart. - (e) A vapor control system with multiple facility vapor connections that processes vapor with a vapor recovery unit must have a detonation arrester located not more than 6 meters (19.7 ft.) from each facility vapor connection. - (f) A vapor control system with multiple facility vapor connections that processes vapor with a vapor destruction unit must: - (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from each facility vapor connection; and - (2) Have an inerting, enriching, or diluting system that meets the requirements of §154.824 of this subpart. - (g) A vapor control system that uses a vapor balancing system in which cargo vapor from a vessel is transferred through the facility vapor collection system to facility storage tanks must: - (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from each facility vapor connection; - (2) Have a detonation arrester located within the storage tank containment area as close as practical to the vapor return connection of each facility storage tank; and - (3) Have facility storage tank high level alarm systems and facility storage tank overfill control systems arranged to prevent cargo from entering the vapor return line. - (h) Except for a discharge vent from a vapor destruction unit, each outlet of a vapor control system that vents to atmosphere and is not isolated with a pressure-vacuum relief valve must have a flame arrester located at the outlet. ## § 154.822 Detonation arresters, flame arresters, and flame screens. - (a) Each detonation arrester required by this part must: - (1) Be capable of arresting a detonation from either side of the device; and - (2) Be acceptable to the Commandant (CG-522). A detonation arrester designed, built, and tested in accordance with appendix A of this part will be acceptable to the Commandant (G-MSO). - (b) Each flame arrester required by this part must be acceptable to the Commandant (CG-522). A flame arrester designed, built, and tested in accordance with appendix B of this part will be acceptable to the Commandant (G-MSO). - (c) Each flame screen required by this part must be either a single screen of corrosion resistant wire of at least 30 by 30 mesh, or two screens, both of corrosion resistant wire, of at least 20 by 20 mesh, spaced not less than 12.7